

Merritt Object Modeling Page 1 of 13

University of California Curation Center

Merritt Object Modeling
Rev. 0.12 – 2010-11-03

1 Introduction

Information technology and resources have become integral and indispensable to the pedagogic

mission of the University of California. Members of the UC community routinely produce and utilize

a wide variety of digital assets in the course of teaching, learning, and research. These assets represent

the intellectual capital of the University; they have inherent enduring value and need to be managed

carefully to ensure that they will remain available for use by future scholars. Within the UC system

the UC Curation Center (UC3) of the California Digital Library (CDL) has a broad mandate to ensure

the long-term usability of the digital assets of the University. UC3 views its mission in terms of

digital curation, the set of policies and practices aimed at maintaining and adding value to authentic

digital assets for use by scholars now and into the indefinite future [Abbott].

In order to meet these obligations UC3 is developing Merritt, an emergent approach to digital curation

infrastructure [Merritt]. Merritt devolves infrastructure function into a growing set of granular,

orthogonal, but interoperable micro-services embodying curation values and strategies [Foundations].

Since each of the services is small and self-contained, they are collectively easier to develop, deploy,

maintain and enhance [Denning]; equally as important, since the level of investment in and

commitment to any given service is small, they are more easily replaced when they have outlived their

usefulness. Yet at the same time, complex curation functionality can emerge from the strategic

combination of individual, atomistic services [Fisher].

NOTE The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,

“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described

in RFC 2119 [RFC2119].

2 Object modeling

Digital content curated in a Merritt environment typically will be managed by the Merritt Storage

service [Storage]. The Storage service imposes minimal structural requirements on the digital content

that is managed in it; in particular, Storage-managed content is not typed so the service has no

understanding of object semantics. Additional requirements are necessary to facilitate the

management of object semantics. These requirements will be enforced by the Ingest service [Ingest]

and the resulting object semantics will be exposed via the Inventory service [Inventory].

2.1 What is an object?

Merritt defines a digital object (often simply referred to as an object) as the representation in digital

form of a thing. The term “thing” is used advisedly in order to be essentially unlimited in scope. For

Merritt Object Modeling Page 2 of 13

example, Merritt objects can correspond to a variety of important classes of things, some more

tangible than others, including:

 Concrete physical objects, such as books, slide images, museum artifacts, films, newspapers,

traditional scholarly publications, field or laboratory notebooks, etc.

 Born-digital objects, such as online publications, websites, electronic theses and dissertations,

spreadsheets, databases, spreadsheets, etc.

 Aggregate objects, such as curatorially- or administratively-defined sets of objects.

 Seed objects, which have a preservation–ready identifier and perhaps some minimal metadata,

but for which Merritt currently has no associated content. Seed objects meet the needs of

curators to obtain a “placeholder” for in-process content, from the moment of conception to

the moment of “birth” (e.g., initial publication or first deposit in Merritt), a process that may

span from weeks to years in various workflows.

 Standardized vocabulary objects, perhaps with associated URIs for semantic web compliance,

such as canonical format names, Namaste directory types, Checkm schema profiles, licenses,

policy statements, etc.

Many other classes of objects are possible as well. The Merritt object model is designed to encompass

the widest possible range of content.

Content curators have full control over the granularity of the mapping from a unit of curatorial content

to one or more objects. For example, a series of 12 annual conference proceedings can be deposited as

a single “series” object, as 12 individual “conference” objects, or as 385 individual “paper” objects.

UC3 can advise curators on the tradeoffs and methods for defining their assets into objects for

submission. Every Merritt object can thus be seen loosely to represent a coherent intellectual work,

c.f. [FRBR], with coherence being a function of a particular curatorial context.

2.2 Classes and collections

Merritt objects MAY be aggregated together into classes (or more colloquially, collections) to meet

various curatorial and administrative needs. Classes themselves MAY be members of other classes to

form acyclic hierarchical inheritance structures. Class membership can be defined in one of two ways:

 An object can assert its membership in the class.

 A class can assert its object members.

Any given class MUST use one or the other assertion mechanisms for all of its members.

Within each class hierarchy of which it is a member, an object SHOULD explicitly assert its

membership only in the innermost enclosing parent class; class membership in all higher-level parent

classes of the hierarchy is asserted implicitly through structural inheritance.

Merritt Object Modeling Page 3 of 13

Classes are represented in Merritt by special class objects. Class membership is thus asserted by

references from objects to the class objects of which they are members, or by references from class

objects to all of the objects that are their members.

NOTE The term “collection” is widely used in many curation and preservation contexts with similar, but not

always equivalent meanings. Therefore the more generic term “class” is used in its stead.

2.3 Object properties

Each Merritt object is associated with the following REQUIRED properties:

 A unique primary identifier in the ARK scheme [ARK]. This identifier MAY be supplied by

the submitting curatorial agent; if not, it SHALL be assigned automatically by the Ingest

service [Ingest].

 An object type, indicating its nature with the Merritt environment (see Table 1).

o Curatorial objects are those representing content originating from external

contributors.

o System objects are those necessary for the internal operation of the Merritt curatorial

environment.

Type Definition

MRT-curatorial
A Merritt curatorial object. Curatorial objects are those representing content

originating from external curatorial contributors.

MRT-system
A Merritt system object. System objects are those necessary for the internal

operation of the Merritt curatorial environment.

Table 1 – Merritt object types

NOTE All Merritt property names and values that start with “Merritt” or “MRT”, on a case-

insensitive basis, are reserved.

Additional object types MAY be defined as necessary.

 An object role, indicating its particular function within the context of its type (see Table 2).

o Class objects represent aggregations of objects. Class objects MAY be of type “MRT-

curatorial” or “MRT-system”;

o Content objects represent individual abstract works. Content objects MUST be of

type “MRT-curatorial”.

Merritt Object Modeling Page 4 of 13

Role Definition

MRT-class
A Merritt class object. Class objects represent arbitrary, but nevertheless

administratively- or curatorially meaningful sets of objects.

MRT-content A Merritt content object. Content objects represent individual abstract works.

Table 2 – Merritt object roles

Additional object roles MAY be defined as necessary.

 Owner class membership. Ownership represents a domain of ultimate responsibility for

content managed in a Merritt environment, including acceptance of all financial obligations

arising from that management. This property is defined by a reference from the object to the

owner class of which it is a member.

 Curatorially-defined collection class memberships. This property is defined by a set of

references from the object to the collection classes of which it is a member.

 Descriptive metadata in the form of the Dublin Kernel REQUIRED “who”, “what”, “when”,

and “where”, and OPTIONAL “how” and “why” elements [Kernel]. The “who” element

roughly corresponds to the object’s creator; “what” to its title; “when” to its creation date;

“where” to one or more format identifiers; “how” to a methodological statement; and “why” to

an expository note. This description is intended to provide a useful, but relatively simple

overview of the object. In particular, it is not intended as a substitute for complete cataloging,

which is expected to exist external to the Merritt curation environment, preferably at a location

specified by a local identifier.

In addition, class objects (of role “MRT-class”) MUST also be associated with the following

property:

 An object aggregate, indicating the aggregate basis for the class (see Table 3).

o Curatorially-defined collection classes represent a common intellectual context for its

members.

o Owner classes represent domains of ownership responsibility.

o Service level agreement classes represent service-level agreements.

Aggregate Definition

MRT-collection
A Merritt collection class. Collections define curatorially meaningful sets of

objects.

MRT-owner
A Merritt owner class. Ownership classes represent domains of ultimate

responsibility for content managed in a Merritt environment.

MRT-service-

level-agreement

A Merritt service level agreement class. SLA classes represent domains of

coverage for agreements between customers and service providers.

Table 3 – Merritt class object aggregates

Merritt Object Modeling Page 5 of 13

Additional class object aggregates MAY be defined as necessary.

Each owner class MUST be the child of some parent service level agreement class. Collection

classes MAY be the children of other parent collection classes. The collection and service

level/owner hierarchies MUST be kept orthogonal and independent of one another.

In addition, class objects (of role “MRT-class”) MAY be associated with the following property:

 Class members. This property is defined by a set of references from the class to the individual

objects that are its members.

In addition, any Merritt object MAY be associated with the following OPTIONAL properties:

 One or more local identifiers. These identifiers SHOULD be meaningful in the local context

of the object’s curator. In general, they SHOULD resolve to a more detailed descriptive

catalog record for the object external to the Merritt curation environment.

Additional object properties MAY be defined as necessary.

2.4 Object components

A Merritt object is composed of an arbitrary number of versions, each representing a discrete state of

the object and further composed of an arbitrary number of components or files, c.f. [Dflat]. Merritt

defines four special files expressing significant object properties that MUST be components of every

Merritt object:

 MOM (Merritt object model) metadata [mrt-mom.txt]. The MOM file component is used to

define the fundamental properties of the object, including primary identifier, type, role,

aggregate (if a class object), and (optional) local identifiers, expressed in ANVL form:

primaryIdentifier: identifier

type: MRT-curatorial | MRT-system

role: MRT-class | MRT-content

 [aggregate: MRT-collection | MRT-owner |

 MRT-service-level-agreement]

 [localIdentifier: identifier

...]

NOTE Brackets [and] enclose optional elements; a vertical bar | separates alternative

choices; and an ellipsis ... indicates 0 or more repetitions of the previous element.

 Ownership class [mrt-owner.txt]. The owner file component is used to define the object’s

owner, that is, the individual or corporate agent accepting final responsibility for the object,

including all financial obligations arising from the object’s management in Merritt. The

owner is represented in the “mrt-owner.txt” file by the primary ARK identifier of the

Merritt Object Modeling Page 6 of 13

owner class object, which MUST be of type “MRT-system”, role “MRT-class”, and kind

“MRT-owner”:

owner

 Membership classes [mrt-membership.txt]. The membership file component is used to

define the set of one or more curatorially-defined collections of which the object is a member.

These collections are represented in the “mrt-membership.txt” file by the primary ARK

identifiers of the collection class objects, which MUST be of role “MRT-class” and kind

“MRT-collection”:

collection

...

 ORE resource map [mrt-object-map.ttl]. The resource map file component is used to

define the object as an aggregate of resources (i.e., files) in terms of RDF triples [ORE, RDF].

For file components that are metadata, as opposed to primary content, the resource map also

defines the metadata schema and serialization syntax. The resource map is expressed in Turtle

form [Turtle]:

@prefix mrt: <http://uc3.cdlib.org/ontology/mom#>.

@prefix ore: <http://www.openarchives.org/ore/terms/>.

<object-url> # This object is ...

 ore:aggregates # ... an aggregate of ...

 <mom-url>, # MOM metadata

 <owner-url>, # Owner class

 <membership-url>, # Collection classes

 <resource-map-url>, # Resource map

 [<erc-url>,] # (Optional) ERC metadata

 <file-url>, # Other object files

 ...;

 mrt:hasMetadata # ... has ingest metadata

 <ingest-url>;

 mrt:hasMetadata # ,,, has membership metadata

 <membership-url>;

 mrt:hasMetadata # ... has MOM metadata

 <mom-url>;

 mrt:hasMetadata # ... has owner metadata

 <owner-url>;

[mrt:hasMetadata # ... has ERC metadata

 <erc-url>] .

<mom-url> # MOM schema and MIME type

 mrt:metadataSchema

 “MRT-MOM”;

 mrt:mimeType

 “text/anvl”.

Merritt Object Modeling Page 7 of 13

<owner-url> # Owner schema and MIME type

 mrt:metadataSchema

 “MRT-owner”;

 mrt:mimeType

 “text/plain”.

<membership-url> # Collections schema and MIME

 mrt:metadataSchema

 “MRT-membership”;

 mrt:mimeType

 “text/plain”.

<resource-map-url> # Resource map schema, MIME

 mrt:metadataSchema # type, and description

 “MRT-ORE”;

 mrt:mimeType

 “text/turtle”;

 ore:describes

 <object-url>.

 [<erc-url> # ERC schema and MIME type

 mrt:metadataSchema

 “ERC”;

 mrt:mimeType

 “text/anvl”.]

NOTE Resource map examples use the Turtle “,” and “;” abbreviation symbols. It is

possible, and acceptable, to express functionally equivalent resource maps using more

verbose alternative expressions.

NOTE The ORE specification currently only defines serializations in RDF/XML, RDFa, and

Atom/XML. Thus, Turtle is a non-standard ORE serialization. However, Turtle has

the significant benefit of far greater transparency for the human reader and its use is

expected to be sanctioned by the ORE specification in the future.

NOTE Until such time as a formal MIME type for the ANVL format is established at the

IANA registry, the experimental MIME type “text/x-anvl” SHOULD be used.

 ERC metadata [mrt-erc.txt]. The ERC file component is used to define a minimal set of

descriptive properties of the object, based on the Dublin Kernel “who” (creator), “what”

(title), “when” (date), “where” (identifier), and “why “(note) elements.

erc:

who: creator

what: title

when: date

where: identifier

 [where: identifier

...]

 [how: methodology]

 [why: note]

Merritt Object Modeling Page 8 of 13

The REQUIRED “where” element appearing in the ERC file SHOULD be the primary ARK

identifier for the object; any subsequent OPTIONAL “where” elements SHOULD be local

identifiers.

Required element values that cannot be supplied MUST use one of the pre-defined coded

values appropriate to the nature of the omission, for example, “(:unas)” (unassigned),

“(:unkn)” (unknown), or “(:null)” (meaningfully empty), c.f. [ERC].

Additionally, class objects (of role “MRT-class”) MAY have the following component:

 Class members [mrt-members.txt]. The members file component is used to define the

objects that are members of the class. These objects are represented in the “mrt-members.txt”

file by their primary ARK identifiers:

object

…

Additional properties MAY be associated with the object by adding additional metadata components.

The semantics of these components SHOULD be declared using one of the schema identifiers in Table

4 with a “mrt:hasMetadata” predicate in the object resource map. Similarly, metadata syntax

SHOULD be declared using the appropriate MIME type with a “mrt:mimeType” predicate. Object

producers with latitude regarding metadata file names SHOULD use the reserved file names

associated with the various schemas.

Merritt Object Modeling Page 9 of 13

Identifier File name (recommended) Metadata schema

AES-X098B mrt-aes-x098b.xml AES-X098B audio technical metadata.

CreativeCommons mrt-creative-commons.xml Creative Commons rights metadata.

DublinCore mrt-dublin-core.xml Dublin Core metadata.

ERC mrt-erc.txt
Electronic Resource Citation

descriptive metadata.

JHOVE2 mrt-jhove2.xml JHOVE2 characterization metadata,

MARCXML mrt-marcxml.xml MARC bibliographic metadata.

MIX mrt-mix.xml
MIX / NISO Z39.87 still image

technical metadata.

MODS mrt-mods.xml MODS descriptive metadata.

MRT-content-model mrt-content-model.txt Merritt content model metadata.

MRT-ingest mrt-ingest.txt Merritt ingest metadata.

MRT-members mrt-members.txt Merritt class member assertions.

MRT-membership mrt-membership.txt Merritt class membership assertions.

MRT-MOM mrt-mom.txt Merritt object model metadata.

MRT-ORE mrt-object-map.ttl Merritt ORE resource map.

MRT-owner mrt-owner.txt Merritt owner metadata.

MRT-service-

level-agreement

mrt-service-level-

agreement.txt

Merritt service level agreement

metadata

PREMIS-object mrt-premis-object.xml PREMIS object preservation metadata.

PREMIS-rights mrt-premis-rights.xml PREMIS rights preservation metadata.

VRA-core mrt-vra-code.xml VRA Core cultural heritage metadata.

Table 4 – Metadata schemas

NOTE Within a Merritt curation environment all file system names beginning with “merritt” or “mrt” (on

a case-insensitive basis) are reserved.

Additional metadata schemas MAY be defined as necessary.

3 Ontological classes and relationships

Merritt object resource maps make use of ontological classes and properties defined in the following

namespaces (see Table 5).

Merritt Object Modeling Page 10 of 13

Prefix URI Ontology

cc http://creativecommons.org/ns# Creative Commons rights metadata.

dc http://purl.org/dc/elements/1.1/ Dublin Core metadata elements.

dcterms http://purl.org/dc/terms/ Dublin Core metadata terms.

ore http://www.openarchives.org/ore/terms ORE aggregation terms.

mrt http://uc3.cdlib.org/ontology/mom# Merritt classes and properties.

rdf
http://www.w3.org/1999/02/22-rdf-

syntax-ns#

RDF vocabulary terms.

rdfs http://www.w3.org/2001/01/rdf-schema# RDF Schema vocabulary terms.

xsd http://www.w3.org/2001/XMLSchema XML Schema datatypes.

Table 5 – Merritt namespaces

Additional namespaces MAY be defined as necessary.

Merritt defines a number of its own ontological classes and properties, all in the “mrt” namespace

(http://uc3.cdlib.org/ontology/mom#).

3.1 Ontological classes

The following Merritt ontological classes are defined.

mrt:Component

rdfs:label Component

rdfs:comment Abstract Merritt class for object model components: object, version, file.

rdf:type rdf:Class

mrt:File

rdfs:label File

rdfs:comment Merritt class for files. A file is a formatted octet stream.

rdf:type rdf:Class

rdfs:subClassOf mrt:Component

mrt:Object

rdfs:label Object

rdfs:comment
Merritt class for objects. An object is the representation in digital form of an

abstract work. An object is composed of an arbitrary number of versions.

rdf:type rdf:Class

rdfs:subClassOf mrt:Component

rdfs:seeAlso mrt:Version

Merritt Object Modeling Page 11 of 13

mrt:Version

rdfs:label Version

rdfs:comment
Merritt class for versions. A version is a set of files that collectively represents a

discrete state of an object. A version is composed of an arbitrary number of files.

rdf:type rdf:Class

rdfs:subClassOf mrt:Component

rdfs:seeAlso mrt:Object

rdfs:seeAlso mrt:File

3.2 Ontological properties

The following Merritt ontological properties are defined.

mrt:hasPreview

rdfs:label hasPreview

rdfs:comment

Merritt property asserting that an object has a preview representation. The preview

representation should present a concise summary of the object, such as a thumbnail

for an image or an abstract for a document.

rdf:type rdf:Property

rdfs:domain mrt:Object

rdfs:range mrt:File

mrt:isDerivativeOf

rdfs:label isDerivativeOf

rdfs:comment

Merritt property asserting that an object component is a derivative of another

component. Note that both components must be of the same type. For example, a

file can only be a derivative of another file.

rdf:type rdf:Property

rdfs:domain mrt:Component

rdfs:range mrt:Component

mrt:metadataSchema

rdfs:label metadataSchema

rdfs:comment Merritt property asserting that a file contains metadata conforming to a particular

schema.

rdf:type rdf:Property

rdfs:domain mrt:File

rdfs:range rdf:Literal

Merritt Object Modeling Page 12 of 13

mrt:mimeType

rdfs:label mimeType

rdfs:comment
Merritt property asserting that a file has a particular MIME type. MIME types must

either be registered in the IANA registry or be experimental types.

rdf:type rdf:Property

rdfs:domain mrt:File

rdfs:range xsd:string

4 File system expression

Object components may originate from the object’s producer, an object consumer, or be generated

automatically by a Merritt service. The primary obligation of a Merritt curation environment is to

ensure the long-term viability of producer-supplied content. There is a somewhat lower obligation

regarding system-generated content, which presumably can be regenerated as necessary; and

consumer-supplied content, which by definition originates outside of the object’s primary curatorial

context. The distinction between component provenance is explicitly represented in the file system

representation of an object, c.f. [Dflat].

consumer/

 [consumer-supplied-files

 ...]

producer/

 [producer-supplied-files

 ...]

system/

 mrt-erc.txt # ERC metadata

 [mrt-members.txt] # Class members

 mrt-membership.txt # Collection membership

 mrt-mom.txt # MOM metadata

 mrt-object-map.ttl # Resource map

 mrt-owner.txt # Owner class

 [other-system-generated-files

 ...]

References

[Abbott] Daisy Abbott, What is Digital Curation? April 3, 2008

<http://www.dcc.ac.uk/resource/briefing-papers/what-is-digital-curation/>.

[ARK] J. Kunze and R. Rodgers, The ARK Identifer Schema, May 22, 2008.

[Denning] Peter J. Denning, Chris Gunderson, and Rich Hayes-Roth, “Evolutionary system

development,” Communications of the ACM 51:17 (December 2008): 29-31.

[Dflat] UC3, Dflat: A Simple File System Convention for Digital object Storage, 2010.

[ERC] J. Kunze and A. Turner, Kernel Metadata and Electronic Resource Citations, April 28, 2009

<http://dublincore.org/kernelwiki/FrontPage?action=AttachFile&do=get&target=ercspec.html>.

Merritt Object Modeling Page 13 of 13

 [Fisher] David A. Fisher, An Emergent Perspective on Interoperation in Systems of Systems,

CMU/SEI-2006-TR-003, ESC-TR-2006-003, March 2006

<http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr003.pdf>.

[Foundations] UC3, Digital Preservation Program: Foundations, 2010.

[FRBR] IFLA Study Group on the Functional Requirements for Bibliographic Records, Functional

Requirements for Bibliographic Records – Final Report, UBCIM 19 (February 2009;

München: K. G. Saur, 1998).

[Ingest] UC3, Merritt Ingest Service, 2010.

[Inventory] UC3, Merritt Inventory Service, 2010.

[Merritt] UC3, Merritt: An Emergent Approach to Digital Curation Infrastructure, 2010.

[MIME] IANA, MIME Media Types, 2010 <http://www.iana.org/assignments/media-types>.

[ORE] Carl Lagoze, Herbert Van de Sompel, Pete Johnston, Michael Nelson, Robert Sanderson, and

Simeon Warner, eds., ORE User Guide – Primer, October 17, 2008

<http://www.openarchives.org/ore/primer>.

[RDF] Graham Klyne and Jeremy J. Carroll, eds., Resource Description Framework (RDF): Concepts

and Abstract Syntax, W3C Recommendation, February 10, 2004 <http://www.w3.org/TR/rdf-

concepts/>.

[RFC2119] S. Bradner, Key Words for Use in RFCs to Indicate Requirement Levels, BCP 14, RFC 2119,

March 1997 <http://www.ietf.org/rfc/rfc2119.txt>.

[Storage] UC3, Merritt Storage Service, 2010.

[Turtle] David Beckett and Tim Berners-Lee, Turtle – Terse RDF Triple Language, January 14, 2008

<http://www.w3.org/TeamSubmission/turtle/>.

