Digital Curation Foundations

Rev. 2.0.1 (draft) – 2015-04-24

Abstract

Digital curation is a complex of actors, policies, practices, and technologies enabling successful consumer engagement with authentic content of interest across space and time. While digital curation is a rapidly maturing field, it still lacks a convincing unified theoretical foundation. Too many fundamental terms of practice are overloaded and under-formalized. To address this concern, the University of California Curation Center (UC3) has modeled the curation domain to provide a consistent, comprehensive, yet parsimonious conceptual foundation for the planning, implementation, and evaluation of its manifold activities. The UC3 Sept model builds upon, and attempts to consolidate, prior efforts such as Kahn and Wilensky, FRBR, OAIS, NAA performance model, PLM, PREMIS, BRM, and ICO. It also draws upon relevant concepts from cognitive psychology, information science, and semiotic theory. The model considers curated content with respect to six distinct analytical dimensions: semantics, syntactics, empirics, pragmatics, diplomatics, and dynamics, which refer respectively to content’s underlying abstract cognitive meaning or emotional affect, symbolic encoding structures, physical representations, realizing behaviors, authenticity, and evolution through time. Correspondingly, there is a hierarchical typology of accumulating content utility: entities, artifacts, articles, products, records, assets, and heirlooms, which are respectively existential, intentional, purposeful, interpretable, reliable, useful, and resilient digital objects. Content engagement is modeled in terms of productive, managerial, and consumptive roles and loci of concerns co-existing within a continuum of originating, organizing, and pluralizing dimensions, which respectively encompass the establishment, imposition of structure upon, and extension of reach and consequence of curated content. Curation strategies are modeled in terms of six high-level imperatives: predilect, collect, protect, introspect, project, and connect. A conceptually sound curation domain model is important for ensuring that programmatic planning, implementation, and evaluation activities are pursued in a rigorous and systematic, rather than ad hoc and idiosyncratic manner. The Sept model components and terminology can be used to make precise yet concise statements regarding curation intentions, activities, and results.

Categories and subject descriptors

Applied computing ~ Digital libraries and archives
Applied computing ~ Enterprise modeling
Information systems ~ Information lifecycle management
Information systems ~ Data management systems

Keywords
digital curation, digital preservation, domain model, content model, object model, semiotics, lifecycle, continuum, planning, strategy
1 Introduction

Digital curation is a complex of actors, policies, practices, and technologies enabling successful consumer engagement with authentic content of interest across space and time.

A given unit of digital content is of interest if it can be readily distinguished from the larger universe of potential alternative content on the basis of consumer criteria and authentic if it is what it purports to be. A consumer’s engagement is successful if the content can be exploited for some desired purpose — whether generative (that is, creating something new), manipulative (adding to, modifying, or deleting from something extant), or consumptive — at a time and place and in a manner of the consumer’s choosing. It is possible that this purpose may be fulfilled only at some considerable spatio-temporal distance from the point of the content’s creation; regardless, the consumer’s purpose is not necessarily constrained to conform to the original intention of the content’s creator. Rather, every engagement is uniquely situated with respect to the subjective context of the content’s curatorial framing and the consumer’s experience, expertise, and expectation.

The curation attributes of enablement, interest, authenticity, and success are a contemporary restatement of traditional stewardship concerns as exemplified by Ranganathan’s “laws” of library science (Ranganathan, 1931). The first law, “Books are for use,” shorn of its biblio-centricity, is fundamentally concerned with utility, that is, the use for purpose underlying any successful engagement with a meaning-bearing object. The second and third laws, "Every reader his book" and "Every book its reader," are fundamentally concerned with ensuring an effective connection between content and consumer as a consequence of an expression of consumer interest. The question of whether the "book" is what it purports to be is one of authenticity, a traditional concern of archival diplomatics that is especially important in the digital realm given digital content’s ease of mutability (Ross, 2007). Mutability of a different sort is implicated in Ranganathan’s fifth law, "The library is a growing organism," which is fundamentally concerned with change, corresponding to curation concerns with content’s extension across space and time. The fourth law, "Save the time of the user," is fundamentally concerned with service and corresponds to the imperative of curating agents providing their customers with tools and services that effectively meet their intellectual, behavioral, and technical expectations. Underlying all of these concerns is the notion that curation encompasses both preservation and use, which are complementary rather than disparate activities: preservation ensuring use over time while use is dependent upon preservation up until that point in time (Rusbridge, 2008).

Curation outcomes naturally lie along a spectrum of possible results largely dependent upon the degree to which appropriate human, organizational, and technical resources can be applied. Some of the factors pertinent to resource allocation decisions are intrinsic to the content itself, such as size, format, structure, and presence (or

1 The term "engagement" is used deliberately to encompass the widest possible range of use cases: interactive as well as passive, dynamic as well as static, creative as well as consumption, immersive as well as presentational, gestalt as well as granular, and inter- as well as intra-relational.

2 The Sept model is for the most part equally applicable to content consumption by human and automated actors. The subjectivity of contextualized content consumption, however, is particular to human consumers. Human sentience carries with it an inherent facility for discretionary judgment conditioned by personal experience, expertise, and expectation not (yet) present in automated processes. The model will be subsequently developed primarily with respect to human consumers, with attention drawn as necessary to alternative formulations appropriate for non-sentient actors.
absence) of self-describing metadata; others are extrinsic, such as collection development policies, curatorial assessments of value, degree of uniqueness or ubiquity, ease of reacquisition or regeneration, availability of appropriate standards, best practices, and tools, staffing levels, and competing demands on finite organizational resources. Given the inevitability of resource constraints it is important that curating institutions make fully informed decisions to allocate (or withhold) resources and perform (or forgo) activities. This will enable institutions to plan and implement effective solutions that maximize curation utility, that is, provide the highest overall level of curation outcomes for the largest body of content with the least effort, while simultaneously expending proportionate effort towards any given unit or class of content based on its assessed value and institutional priority.

2 Modeling the domain

Curation decisions should be made with respect to an underlying theory or conceptual domain model. A domain model is an abstraction of fundamental descriptive and explanatory principles sophisticated enough to explicate past events and conditions and anticipate the consequences and efficacy of future decisions and actions; in other words, it is both descriptive and predictive (Reynolds, 1971). It is useful to build up such a model incrementally from first principles in order to ensure comprehensive scope, self-consistency, and parsimony. All models, however, are at best idealized representations of nominal domain concepts. The simplifying assumptions and abstractions inherent to any modeling effort at times may be somewhat incommensurate with pertinent real world detail and any actual curation entity or condition may not fully conform to explicit or implicit model categories or definitions. Nevertheless, the Sept model provides the University of California Curation Center (UC3) with a useful conceptual map, analytical framework, and descriptive vocabulary applicable to its multifarious curation activities.

When UC3 first started a comprehensive internal review of its curation activities to evaluate their efficacy and set future priorities, it did so in the context of many descriptive and prescriptive frameworks familiar to the digital curation and preservation communities, for example, the ISO 17421 OAIS reference model (2012), TRAC (OCLC/CRL, 2007), PREMIS (2012), etc. In working with these models, however, UC3 staff soon found themselves asking a number of seemingly simple, yet deceptively difficult-to-answer questions. What exactly is a “digital object”? What specifically is meant by “preservation” of an object? None of the preexisting frameworks provided fully sufficient answers. In addition to definitional ambiguity, it was not immediately apparent how, or indeed whether, the conceptual models underlying these disparate efforts cohered into a unified and comprehensive

3 It is important to distinguish between a domain or reference model and a reference architecture. A reference model concerns itself with defining fundamental domain concepts. A reference architecture emerges through the application of a set of constraints, for example, functional and non-functional requirements, to the reference model. The resulting architecture represents a particular limited design space within the larger domain of the reference model (Mackenzie et al., 2006). Sept is intended solely as a reference model, not an architecture.

4 The principle of parsimony, most famously articulated as Occam’s Razor, posits that the minimally sufficient explanation is to be preferred over more complex alternatives (Baker, 2010). By definition simpler than other approaches, a parsimonious model should be inherently more amenable to both intuitive and empirical validation. It’s important to note, however, that simple is not synonymous with simplistic; an appropriate conceptual economy can nevertheless be universal in applicability and rich in expressive power.
picture of the curation domain. A comprehensive reference model is important in ensuring that programmatic curation activities are planned, implemented, and evaluated in a rigorous and systematic, rather than an ad hoc and idiosyncratic fashion. To address these concerns, UC3 developed a new approach towards conceptualizing the curation domain that draws freely from past efforts, but also incorporates applicable concepts from cognitive psychology, information science, and semiotic theory. The UC3 Sept model affords a useful conceptual map, analytical framework, and descriptive vocabulary applicable to the full range of curation activities.

2.1 Perception and cognition

Since the ultimate goal of digital curation is to "deliver" content, that is, some coherent unit of intellectual meaning or emotional affect, to a human consumer, any persuasive model of the curation domain must be cognizant of innate human psychological and cognitive faculties. This human focus is important since even in cases of intermediating technical systems the ultimate agency in any consumptive act always resides in a controlling human actor (Dallas, 2007). A more precise way of describing content consumption is that the (analog) sensory perception of the (digital) content ultimately invokes a mental reformulation of the content's underlying meaning or affect by the consumer (Flouris and Meghini, 2007). Broadly speaking, the process by which meaning or affect is acquired progresses through several discrete stages (see Figure 1):

1. An abstract unit of content is ...
2. Realized by physical stimuli, which are ...
3. Perceived by one or more sense modalities, ...
4. Apprehended as an uninterpreted sense-image or percept, ...
5. Interpreted in the specific subjective context of the consumer, and ultimately ...
6. Experienced as cognitive meaning or psychological affect.

In defining the final crucial transition from perception to cognition it is important to recognize that content consumption is an inherently semiotic act.

![Figure 1 – Human cognition model](image-url)
2.2 Curation semiotics

Semiotics is the science of sign systems and signification, that is, things that carry meaning or affect and the ways in which that meaning or affect are represented and communicated (Eco, 1974; Nöth, 1990; Mai, 1997). In Peirce's triadic theory of semiotics a sign is something that "stands in" for something else, for someone, in some manner (Peirce, 1932). Thus, a sign is a triadic relation between an external referent, its representation, and its effect on the consumer, which is a new mental state or reformulation of the referent stimulated by its representation (see Figure 2). This cognitive or emotional state always arises from the percept in the subjective context or ground of the consumer's collateral experience independent of the sign itself (Benyon-Davis, 2011). As noted by Dappert and Farquhar (2009), no unit of digital content is inherently significant; it gains significance for its consumer only "in a context relevant to some purpose or goal."

![Figure 2 – Triadic semiosis](image)

For purposes of analysis, it is useful to consider digital content in terms of five distinct semiotic analytical dimensions: semantics, syntactics, empirics, pragmatics, diplomatics, and dynamics.

1. Semantics is concerned with the relationships between content and its underlying abstract meaning or affect;
2. Syntactics, with the relationships inherent to the content's expression, that is, its symbolic encoding structures;

5 The tri-fold division of semiotic analysis into syntactics, semantics, and pragmatics was proposed by Morris (1946). The addition of empirics as a valid semiotic concern was suggested by Stamper (1973). Temporal considerations are usually discussed in the semiotic literature in terms of the Saussurean opposition of synchrony and diachrony (Saussure, 1916). While chronemics is the study of the role that time can play as a non-verbal sign, it does not consider the potentially corrosive effect of time on a sign (Walther and Tidwell, 1995). The alternative term used here to describe that effect, dynamics, is borrowed from Cheney et al. (2001) and Flouris and Meghini (2006). The introduction of diplomatics as a valid semiotic concern is an original contribution of the Sept model.
3. Empirics, with the relationships between content and its physical representations;
4. Pragmatics, with the relationships between content and its consumers, that is, the executable behaviors that enable meaningful engagement;
5. Diplomatics, with the trust relationships between content and factual authenticity of its expression, representation, management, and transmission (SAA, 2015); and
6. Dynamics, with the relationships between various states of content as it persists and evolves across space and time.

These semiotic dimensions are direct analogs for longstanding curation concerns with digital content’s abstract meaning, symbolic inner structure and outer form, physical carrier, experiential behavior, archival authenticity, and spatio-temporal persistence.

2.3 Digital objects

Digital objects are encapsulations of information for purposes of communication. Before devising Sept, UC3 reviewed a number of prior models for digital objects and the more general notion of communicable information, including the sender/receiver model (Shannon, 1948; Schram, 1954; Berlo, 1960); Buckland’s information trichotomy (Buckland, 1991); Kahn and Wilensky (1995), FRBR (IFLA, 1998), the NAA performance model [(Heslop et al., 2002), OAIS (ISO, 2012), PREMIS (2012), the Basic Representation Model (BRM) (Wickett et al., 2012), and the Information Carrying Ontology (ICO) (Doerr and Tzitzikas, 2012). The component ontological subdivisions defined by these models can be approximately aligned against one another in a tabular fashion (see Table 1).

Two pertinent facts emerge from this exercise:
1. The number of rows in the table indicates the overall fineness of granularity with which these models have usefully decomposed the concept of an information object; and
2. None of the prior efforts completely addresses the full gamut of ontological concerns at the finest decompositional level.

The Sept model is intended to provide unambiguous definition of all ontological granules in a single coherent model, clarifying what an object is and what it is not.

2.3.1 Message vs. meaning

A digital object is a means by which a content producer intends to communicate some message to a consumer. However, while an object can convey the producer’s message—numbers, words, images, sounds, etc. – the meaning ascribed to that message is not actually carried by the object itself. Rather, the consumer’s experience of

6 The “Sept” model name is derived from the approximate phonetic pronunciation of the SSEPDD acronym formed by the six analytical. “Sept” is also a genealogical term referring to a division or subgroup of a Scottish family or clan, possibly derived from the Latin septum, “enclosure,” which is apropos for a model defining the various affinities between related but distinct components of digital content objects.
cognitive meaning or emotional affect is an emergent epistemic effect of the consumptive act. In other words, an object mediating a communicative act is conceived as a reflection of a particular mental state of its producer and is intended to induce a corresponding state on the part of its consumer. However, the consumer’s mental formation of meaning arises through the contextually grounded interpretation of the message expressed and represented by the object, so the producer’s intention may never be fully realized. While the potential for discordant interpretation may be minimal regarding the communication of propositional content, that is, objectively factual truth claims, individualistic responses are accepted and often even highly desirable outcomes for engagement with creative expression.

Table 1 – Information modeling crosswalk

In semiotically-theoretic terms, an act of object-mediated communication occurs when an expressible message reflecting an intended meaning or affect is encoded into an object that is susceptible to contextualized decodings, resulting in subjectively experienced cognitive meanings or emotional affects. Thus, a digital object is the mechanism for reifying an abstract expressible thought into a consumable embodied thought, a critical distinction long established in the semiotic field, viz., signified vs. signifier, as well as in library and information science, viz., work vs. document (Svenonius, 2000). Following from this, the major ontological components of a digital object are its message, structure, form, carrier, behavior, and annotation, reflecting the chain of content reification (see Figure 3).

An object’s message reflects the object’s semantic aspect, that is, its abstract information content. This content is represented through arbitrarily nested symbolic encodings reflecting the object’s syntactic aspect. These encodings can be distinguished between those concerned respectively with the object’s inner expressive structure and outer morphological form. The primary attribute of object morphology is identity. The identity of an object, like that of a sign, serves three purposes (Dewey, 1910):

1. As a fence, distinguishing and demarcating a particular object from all other potential objects;
2. As a label, facilitating unambiguous common reference to a singular object; and

3. As a vehicle, providing an actionable means for interacting with the object for some teleological purpose.

Figure 3 – Object-mediated communication

Morphological form also implicates the interface between the object and the encompassing computational environment necessary to support the object’s visibility and dereferencing, for example, encoding details attendant to a file system or network infrastructure depending upon whether the object is at rest or in motion.

The primary attribute of an object’s inner structure is its format or type, which specifies the conventions of the object’s symbolic expression and tangible representation (Abrams, 2007). Without an assertion of identity, there is no effective way to establish an object as the focus of curation scrutiny; similarly, without format typing, there is no effective means of retrieving, interpreting, and exploiting the object’s message.

2.3.2 Annotation

Since the publication of Kahn and Wilensky’s seminal work it has been conventional to refer to the nominal unit of digital curation analysis as a “digital object.” However, their definition of object—an aggregate of typed data and key-metadata—is coarse-grained and doesn’t support nuanced distinctions conducive to comprehensive modeling. The OAIS reference model generalizes and formalizes the concept of metadata as representation information and adds the key insight that an information object is an aggregate of data and the representation information that defines the context in which the data are interpreted; furthermore, that representation information is itself an information object subject to its own representation information, ad infinitum. As a practical matter, the infinite regress of meta-interpretive representation information stops when it reaches the level of the presumed
knowledge base of a designated community, that is, the common baseline understanding that can be assumed on the part of targeted consumers. This is an aggregate community-wide equivalent to the individual consumer’s contextualizing semiotic ground.

The essence of representation information is that it is an external description or annotation of its referent. Some amount of annotation—minimally, identity and type—is necessary for any effective consumption of a given unit of content. Content typing provides useful information at both the individual and class level. For example, the general type of still image implies a common set of generic attributes entailed by that type, for example, height, width, bit depth, color space, etc., while the specific JPEG 2000 format implies a particular form of syntactic structure for expressing the generic characteristics. Both the general and specific type characteristics form an important component of the preservable essence or significant properties of the represented content (Hedstrom and Lee, 2002; Dappert and Farquhar, 2009). While identity and type are fundamentally necessary annotative properties, by themselves they may not be fully sufficient for ensuring a successful engagement with identified and typed content; a fully meaningful engagement may be dependent upon higher-order semantic and pragmatic properties (APARSEN, 2014).

An annotation is a propositional statement that declares a value for a property held by its referent (Dappert and Farquhar, 2009).7 Referents can be defined as arbitrarily-granular subsets (proper or otherwise) of a given unit of content. Collectively, annotations define the context and significance of their referents. The relationship between an annotation and its referent content foreshadows that between the contextual ground and interpretant: annotations contribute to content’s objective context and inform the contextualizing ground of the consumer’s subjective interpretation (see Figure 4).

![Figure 4 – Annotation and ground](image)

Annotations can be contributed by three classes of actors: content producers, managers, and consumers; and at three points of engagement: acquisition/creation/modification, management, and retrieval/reuse. Historically, memory institutions have delegated descriptive priority to content producers and managers while discounting the

7 Propositional statements are well known in the subject-predicate-object form used by semantic expression languages such as RDF. For example, the proposition \(\langle \text{Jack-and-Jill}, \text{ran-up}, \text{the-hill} \rangle \) asserts that it is true that its subject ("Jack and Jill") satisfies its predicate ("ran up") relative to its object ("the hill").
role of consumers. Over archival timespans, however, the most useful content annotations may be contributed by those consumers who affirmatively seek out and exploit content, often in novel ways unintended or unforeseen by its producers. While the fullest possible set of annotations is highly desirable for facilitating successful curation strategies and outcomes, in practice this often will not be case. While this situation is not ideal, it is also not unusual: scholars have always labored in archives to (re)identify and (re)contextualize otherwise unknown or underutilized material.

2.3.3 Context and ground

Traditional semiotic analysis presupposes two primary actors in the communicative act: producers and consumers. When dealing with scholarly content in the curation domain, however, a third managerial actor generally intermediates between producer and consumer. Content is collected, managed, and presented for use by a curatorial agency as part of larger aggregations based on collection policy, thematic or disciplinary unity, or seemingly arbitrary administrative convenience or serendipity. The contextual perspective of the curatorial manager will inevitably leave traces in a consumer’s interpretive experience, just as a producer’s conceptual frame-of-reference informs the intention underlying content production. Thus, through its mode of production, membership in encompassing curatorial collections, and under the imprimatur of its stewardship agency, a given unit of content is situated within a wider network of explicit and implicit denotative, connotative, and metaphorical connections through which it accumulates additional nuanced meanings or affects (Danesi, 2003). These connections can take several forms:

1. Intangible associations, that is, inferences drawn from prior cultural and professional engagement.
 a. Reputational characteristics associated with the content producer.
 b. Reputational characteristics associated with the curatorial agency stewarding collections and content.

2. Inferable relationships, that is, productive and managerial intentions that are partially or provisionally recoverable.
 a. Conceptual frames-of-reference of content producers, as reflected in producer-contributed annotations.
 b. Individual content and collection-level glosses expressed through curatorial assessment, selection, arrangement, aggregation, etc., as reflected in manager-contributed annotations.

3. Tangible relationships, that is, those directly representable in content objects or object management systems.
 a. Typed structural and semantic relationships between separate but dependent content objects.
 b. Typed structural and semantic relationships between aggregate collections, inclusive of attendant goals, policies, interpretive context, etc., and their subsidiary member objects.

4. Tacit understanding acquired through personal experience that a consumer brings to the interpretative
All of these factors contribute to, but do not fully determine, the consumer’s interpretive ground and subjective experience (see Figure 5).

The set of connections in which a given object participates form **associational** and **relational networks** that are fundamentally fluid and dynamic, as every act of dereferencing has the potential to result in modification or addition, particularly to the intangible associational network (Steels, 2008). The generalized recursive nature of these networks—the object of any given connection being itself susceptible of further connection—is reminiscent of the chains of references in OAIS representation networks (OAIS, 2012).

2.3.4 Behavior

A human consumer never directly interacts with a digital object in its native digital form. This realization underlies the NAA performance model (Heslop et al., 2002), which stresses the importance of an object’s **performance**, that is, its transformation into humanly-sensible form. A performance is equivalent to what Doerr and Tzitzikas’s information carrying ontology (ICO) model calls a **projection**, a process for converting an information carrier into a sensory impression (Doerr and Tzitzikas, 2012). The KB preservation layer model (PLM) introduced the term “view path” to refer to the complete set of technical dependencies by which a digital object is **rendered** into analog form (van Diessen, 2002).\(^8\) These dependencies exist in the context of a larger computational **environment** including software applications, operating systems, and hardware platforms, with each level being susceptible to more granular decomposition. The importance of documenting view paths cannot be overstated since all engagement with digital content entails intermediation through executable behaviors to convert the content to an apprehendable form. It is preferable to speak of "behaviors" rather than "view paths" as the latter carries an implication of being applicable only to passive consumption while the former better encompasses arbitrarily-\(^8\) Although the term "rendered" is most commonly applied to images, it is used here in a generic sense of any digital-to-analog conversion regardless of content genre or format.
complex engagement modalities, for example, interactive, dynamic, or immersive engagement.

2.3.5 Reification

All of the modeling efforts discussed so far start from the premise that a digital object is a physical thing, that is, an organized pattern of matter or energy in the sense described by Bates (2006). The lowest stratum of OAIS data modeling, for example, is defined as a set of bits. The FRBR model provides a valuable insight that content exists—or can be construed—along a continuum between intangibility and materiality: an abstract work realized by a symbolic expression physically embodied in a manifestation exemplified by an item (IFLA, 1998). A similar hierarchy underlies the basic representation model (BRM), in which abstract propositional content is expressed by nested symbol structures that are inscribed in patterned matter and energy (Wickett et al., 2012). The "propositional content" terminology, however, may be too limiting for a general-purpose curation model since it implies that the BRM is applicable only to content reducible to factual truth claims. In order to encompass non-factual content, for example, creative or aesthetic works intended to impart a direct visceral emotional response, the more generic label "message," referring to content’s noumenal essence, is preferable as it applies to the widest possible range of content types. In the semiotic triad, a message plays the role of the semiotic object. The message, its encoded inscription on a physical carrier, and the behaviorally-mediated engagement with it correspond to Buckland’s information-as-knowledge/information-as-thing/information-as-process trichotomy (Buckland, 1991).

2.3.6 Dynamics

The goal of curation is to provide a stable interpretive experience of a given noumenal unit of content across space and time. Ubiquitous connectivity has largely eliminated difficulties posed by spatial concerns, but the inherently corrosive effects of time on digital content remain problematic. As Moore (2008) and Mois et al. (2009) have pointed out, digital preservation (and by implication, curation) is "communication with the future." The seminal model of information-theoretic communication was developed by Shannon (1948), in which a sender encodes a message and transmits it as a physical signal across a channel, subject to degrading noise, at which point it is decoded and experienced by a receiver. In subsequent refinements, Schramm (1954) emphasized the necessity of the (human) sender and receiver sharing a common frame of reference for the communicative act to be successful, while Berlo (1960) introduced consideration of the effect the communicated message has on its receiver (see Figure 6). The frame-of-reference is equivalent to the assumption of a priori knowledge of an information object’s symbol set and arrangement rules that is a necessary precondition for its effective exploitation in the ICO model (Doerr and Tzitzikas, 2012), both of which inform the subjective semiotic ground.

9 As the BRM was developed to model scientific data, that is, “all and only those things that are either possibly true or possibly false” (Wickett et al., 2012), this terminology is appropriate in its original context.

10 “Noumenon,” from the Greek νοούμενον, “that which is apprehended by thought,” in distinction to phenomenon, “that which is apprehended by sight,” is used by Kant (1781) to refer to a posited thing-in-itself (das Ding an sich) independent of any material representation.
Factors that impede communication are noise. It is useful to distinguish between channel and contextual noise: the former degrades the integrity of the signal carrying the encoded message — for example, media bit corruption introduced through proximity to ionizing radiation or magnetic fields, thermal stress, mechanical trauma, etc. — while the latter distorts the interpretive context of the message — for example, a conceptual misalignment between the objective frame-of-reference and subjective contextual ground — and thus, the message's interpretation and ultimate effect on its receiver. The primary strategy for ameliorating the effects of channel noise is the addition of redundancy to the encoded signal, for example, mirroring, parity, checksums, erasure codes, etc. One strategy for minimizing contextual noise is to provision effective means for the sender's frame-of-reference to inform fully the contextual ground of the receiver; in other words, to ensure that the receiver can properly recover the intention of the sender. Descriptive annotations are included as a fundamental component of a digital object in order to facilitate this very process. However, since this strategy implies communication of the annotations across a channel either in conjunction with, or independent of, their referent content, the amelioration of contextual noise is itself subject to potential channel noise. The message, frame-of-reference/context, encoding/decoding, channel, signal, and effect components of the augmented sender-receiver model correspond respectively to the emotive, referential, metalingual, phatic, poetic, and conative functions of (linguistic) communication identified by Jakobson (1960).

A curation channel may have both spatial and temporal extension and thus an object's state is inherently situated within a digital space-time frame. Cheney et al. (2001) view the dynamics of a digital object in game-theoretic terms as a sequence of state configurations resulting from alternating game moves or actions by the object's

11 The theory of the intentional fallacy holds that it is never possible to be fully cognizant of the intention of a message's sender, since there is no reliable means extrinsic to the message itself for the receiver to determine that intention (Wimsatt and Beardsley, 1946). In other words, from the perspective of a content consumer only interpretation can be known definitely, while intention can be intuited — at best — only provisionally. However, while clearly appropriate to inherently subjective creative or non-propositional content (Morrissey, 2014), the intentional fallacy may not apply to content comprised of (purportedly) factual truth-claims.
encompassing environment and curating agent, respectively introducing inhibiting channel and contextual noise and applying both proactive and reactive ameliorating strategies. The interactions between a responsible curating agent and malicious actors seeking to subvert curation goals for their own gain can be characterized as a zero sum competitive game (Chatain, 2013), in which one side's advantage is the other's loss. On the other hand, interactions with encompassing physical and computational environments are neither strictly competitive nor cooperative, since the environmental actions are impersonal and undirected towards any particular teleological purpose.

2.3.7 Object model

Synthesizing these various formulations, a digital object can be defined as consisting of (see Figure 7):

1. An essential noumenal message, ...
2. Expressed via nested symbolic encodings, ...
3. Inscribed on physical carriers, ...
4. Described by annotations (themselves objects), ...
5. Realized through behaviors (themselves objects); and ...
6. Subject to curation actions.

Figure 7 – Curation object model

That is, an ineffable message is given abstract form through various symbolic encodings, physical form on a digital
carrier, experiential reality through mediating behaviors, and persistence through intervening actions. A message's complete encoding may result in a highly composite entity composed of multiple structurally-related files and hierarchically-nested bitstreams, each with some degree of independent identity and function, but nevertheless contributing to a larger coherent whole. In this sense a message's encoded expression is equivalent to a PREMIS representation (PREMIS, 2012). Note that annotations and behaviors are themselves representation information-like objects, which can be incorporated by encapsulation (perhaps most appropriate for annotations) or reference (most appropriate for behaviors). The latter case relies on an external curation environment to ensure that the referents are available as necessary. Behaviors correspond to service definition and deployment objects in the Fedora object model (2012).

2.3.8 Object typology

While the conceptual modeling of a digital object progresses most naturally in a top-down (or abstract-to-tangible) direction, that is, message > encoding > carrier, as a practical matter it is useful to consider the bottom-up progression from most general to most specialized organization, carrier > encoding > message, since curation strategies focused on generic objects usually apply equally well to specializations, but not necessarily vice versa. Thus it is useful to distinguish seven hierarchical stages of accumulating object utility: entities, artifacts, articles, products, records, assets, and heirlooms (see Figure 8 and Table 2).12

1. An entity is a digital thing. It comes into being through a formative act of inscription that results in tangible bits on an otherwise undifferentiated digital carrier, e.g., storage media or communication channel. Beyond its own existence nothing further can be known or inferred about a digital entity. Thus, its essential quality is existential and its utility is nascent. For example, consider the bits
\[...000000000000000000000011000110101001010000...\] inscribed on a digital carrier, which by themselves convey no useful information.

2. An artifact is an intentional digital entity, that is, one can infer that it was deliberately created, even though the purpose underlying that creation remains undisclosed. An artifact comes into being through an informative act of identification that demarcates a particular sequence of bits fixed in digital spacetime. This constitutes an outward-facing morphology, that is, its interface with its encompassing computational environment, for example, encoding details attendant to tracks, sectors, blocks, volumes, file systems, etc. Many artifacts will possess a number of hierarchically-nested encodings. The essential properties of an artifact are its name, location, size, bitstream, and any function over that bitstream, for example, a message digest, that is not dependent on higher-order syntactic, semantic, or pragmatic information. In and of itself, however, an artifact is syntactically opaque: it affords no opportunity to interpret or infer how its constituent bits express any underlying noumenal meaning. Thus, its utility is incipient. For example, consider the file "E20140714112409.jp2" with specific size, creation and last modification date/times, MD5 digest, etc., absent any knowledge of its contents' expression.

12 Although there are only six semiotic dimensions it is useful to distinguish between inner and outer symbolic encodings, corresponding respectively to commodities and articles in the seven-level object typology, but both associated with the syntactic dimension.
3. An article is a *purposeful* digital artifact, even if the meaning underlying that purpose remains undisclosed. An article comes into being through an informative act of *characterization* that documents *inner* structural symbolic encodings concerned with the internal structural expression of the article.\(^{13}\) The essential properties of an article are its type or format and any further attributes entailed by that format. Many articles will possess a number of hierarchically-nested encodings. While these provide details of the article’s expression, its underlying noumenal message is still semantically opaque. Thus, an article’s utility is *potential*. For example, consider the JPEG 2000-formatted *image* with three 8-bit components representing sRGB color samples, with 1024-x1024 tiles, 64x64 code blocks, six decomposition layers, 25 quality layers, and 9-7 irreversible wavelet compression, but absent any knowledge of what the image *represents*.

4. A product is an *interpretable* digital article. It comes into being through an informative act of *description* that documents its underlying message in terms common to a particular domain of scholarly discourse. In and of itself, however, a product doesn’t afford any practical means to experience or exploit that message. Thus, a product’s utility is *theoretical*. For example, consider the photographic image of Lake Merritt, a national historic landmark and the United States’ first designated wildlife refuge located at 37.8039° N, 122.2591° W, close to UC3’s offices in Oakland, California, absent any realizing behaviors.

5. A record is a *reliable* digital product. It comes into being through an evaluative act of *verification*. The essential properties of a record are those important to considerations regarding the presumption, verification, and maintenance of authenticity (Duranti, 2005). Being reliable, a record’s utility is *assured*. Consider, for example, the Lake Merritt image that has been evaluated and determined to be what it purports to be, so that it can be accepted with confidence.

6. An asset is a *useful* digital record. It comes into being through a performative act of *realization* that exposes the article’s meaning or affect as stimuli apprehendable to human sensory modalities (Benyon-Davis, 2011; Heslop, 2002).\(^{14}\) Thus, an asset’s utility is *practical*: it can be directly experienced and exploited by a consumer towards some useful purpose. For example, consider a consumer’s *experience* engaging with the authentic Lake Merritt image in a colorimetric image processing environment supporting dynamic zooming, panning, cropping, annotation, etc., absent any consideration of spatial or temporal extension.

7. An heirloom is a *resilient* digital asset. It comes into being through a reformative act of *intervention* that ensures the continuing viability and usability of the asset across space and time. Thus, to the extent to which those interventions are successful, an heirloom’s utility is *enduring*. For example, consider a consumer’s *future* engagement experience with the Lake Merritt image.\(^{15}\)

\(^{13}\) The *inner/outer* distinction is borrowed from Hofstadter (1979), although with a somewhat different emphasis.

\(^{14}\) The act of engagement underlying an asset presupposes syntactics- or semantics-aware behaviors. Merely being able to provide file-level access to or manipulation of an artifact is not sufficient to raise its status to an asset.

\(^{15}\) The term *entity* is borrowed from the standard upper ontology; *artifact* is used in its archaeological connotation: something demonstrably created through an explicit commissive act for some (as yet) unknown purpose; *article, xx; product is
Artifacts, products, records, assets, and heirlooms correspond respectively to the identity, understandability, authenticity, renderability, and persistence concerns of the simple property-oriented threat (SPOT) model (Vermaaten et al., 2012); the SPOT availability property is a cross-cutting concern applicable across the typological hierarchy. The particular arrangement of inner and outer symbolic encodings expressing a given article may conform to a common pattern, or content model (Fedora Commons, 2011). Classifying articles by their content model may aid curation activities by permitting behaviors, analyses, policies, strategies, and actions to be defined at a class rather than individual level.

<table>
<thead>
<tr>
<th>Differentia</th>
<th>Entity</th>
<th>Artifact</th>
<th>Article</th>
<th>Product</th>
<th>Record</th>
<th>Asset</th>
<th>Heirloom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>empirics</td>
<td>syntactics</td>
<td>syntactics</td>
<td>semantics</td>
<td>diplomatics</td>
<td>pragmatics</td>
<td>dynamics</td>
</tr>
<tr>
<td>Mode</td>
<td>formative</td>
<td>informative</td>
<td>informative</td>
<td>informative</td>
<td>evaluative</td>
<td>performative</td>
<td>reformatory</td>
</tr>
<tr>
<td>Act</td>
<td>inscription</td>
<td>identification</td>
<td>characterization</td>
<td>description</td>
<td>verification</td>
<td>realization</td>
<td>intervention</td>
</tr>
<tr>
<td>Concern</td>
<td>media</td>
<td>outer encoding</td>
<td>inner encoding</td>
<td>meaning/affect</td>
<td>authenticity</td>
<td>experience</td>
<td>persistence</td>
</tr>
<tr>
<td>Abstraction</td>
<td>carrier</td>
<td>form</td>
<td>structure</td>
<td>message</td>
<td>evidence</td>
<td>behavior</td>
<td>action</td>
</tr>
<tr>
<td>Quality</td>
<td>existential</td>
<td>intentional</td>
<td>purposeful</td>
<td>interpretable</td>
<td>reliable</td>
<td>useful</td>
<td>resilient</td>
</tr>
<tr>
<td>Utility</td>
<td>nascent</td>
<td>incipient</td>
<td>potential</td>
<td>theoretical</td>
<td>assured</td>
<td>practical</td>
<td>enduring</td>
</tr>
<tr>
<td>Annotation</td>
<td>provenancial / administrative / permissive</td>
<td>morphological / relational / associational</td>
<td>structural</td>
<td>intellectual</td>
<td>provenancial</td>
<td>instrumental</td>
<td>provenancial</td>
</tr>
</tbody>
</table>

Table 2 – Curation object typology

suggested by Ackoff's insight that a system is not the sum of its part but the product of its interactions, a digital product resulting from the interaction of behavior applied to an article; asset, for its connotation as a valued xx; and heirloom, xx.
Table 2 indicates an association between the six typological classes and a set of annotation categories: *provenancial, administrative, permissive, morphological, structural, intellectual,* and *instrumental:*

1. Provenancial annotations describe the actors, conditions, and events that led to the creation, acquisition, or revision of the content;
2. Administrative annotations describe the actors, conditions, and events related to the ongoing curation management of the content;
3. Relational annotations describe structural connections with other objects and aggregated collections.
4. Associational annotations describe producer frames-of-reference and curatorial policies and interpretive glosses.
5. Permissive annotations describe IPR and terms of service rights and obligations attendant to content management and engagement;
6. Morphological annotations describe content's externally-facing expression in terms of outer symbolic encodings;
7. Structural annotations describe content's internal expression in terms of inner symbolic encodings;
8. Intellectual annotations describe content in terms meaningful to an applicable domain of scholarly discourse; and
9. Instrumental annotations describe behaviors applicable to the content.

This is not to imply that these categories are appropriate only relative to their associated classes; rather, the associations merely indicate the earliest stage in the typological progression at which those particular annotation types are relevant. For example, an entity has provenancial properties independent of and prior to any artifactual concerns (for example, carrier X was received from agent Y at time Z, etc.), an artifact has morphological properties independent of and prior to any article-level concerns (file X of size Y and modification date Z, etc.), and so on.

Neither the model components nor its typological classes should be construed as clearly-demarcated categories. Rather, they represent useful abstractions whose properties, coalescing around core conceptual centers of gravity, may be held to a greater or lesser extent by any particular component or typological instantiation. Nevertheless, the components and typology can be used to make concise yet precise statements regarding curation policies, strategies, systems, and results. For example, it is common to divide preservation obligations into tripartite media, bit-level, and functional preservation levels. These correspond respectively to activities focused on ensuring the integrity of entities, articles, and assets. Creating forensic disk images is a suitable strategy for preserving entities (that is, media objects), independent of any artifactual morphology; fixity audit, for artifacts (file objects), independent of any type characterization; migration, for commodities (syntactically- and semantically-characterized objects), independent of any behavioral considerations; and emulation, for assets (experiential objects).

While a curating agent could choose to enforce a lower service obligation than what may be otherwise
supportable by an object’s typological characteristics, it is not possible to meet a higher obligation. For example, an article (e.g., a typed file) could be managed purely as an artifact (an opaque file) through the expedient of disregarding any non-morphological characterization, but no matter how successful the preservation of a true artifact, it will never afford any higher-order structural information about its contents; if such information were known or could be inferred, the object would be an article rather than an artifact. Thus, finely-grained typological modeling permits more precise statements of curation intention, expectation, and result. For example, saying that an object will be “functionally” preserved is open to potential ambiguity; on the other hand, saying that it will be preserved as an article makes clear that it will continue to be a purposeful object through persistent association with pertinent inner structural encoding information. Similarly, a preserved product will remain meaningful through association with appropriate semantic characterization, and a preserved asset will remain useful through association with realizing behaviors.

Given a semiotic view of content engagement, it may never be possible to preserve a digital object "perfectly." While it is potentially possible to fix and maintain indefinitely the state for all components on the objective side of the communication channel (i.e., message, encoding, carrier, annotation, behavior, stimuli), on the subjective side the consumer’s future contextual ground, conditioned by the totality of the consumer’s intervening lived experience, is not susceptible to any equivalent constraint. This may not be significant for propositional content consisting of purportedly-objective truth claims, but could be important for creative content.

While it is often convenient to refer of a digital object’s state as unitary, each individual object component—encoding, carrier, annotation, behavior, etc.—can evolve independently along its own unique dynamic trajectory.

2.4 Modeling content engagement

An act of consumer engagement occurs when a digital object is:

1. Acted upon by behaviors, ...
2. Rendered as physical stimuli, ...
3. Apprehended as a percept, ...
4. Reformulated as an interpretant in the subjective context of the consumer’s ground, and ...
5. Experienced as subjective meaning or affect.

Content engagement is modeled in terms of a set of actors who engage with digital content in various ways across a scholarly and curatorial life-cycle (Ball, 2012; CEOS Working Group on Information Systems and Services, 2012), and the life-cycle activities in which those actors participate. At the highest level of abstraction, there are three categories of actorial roles, although each can be usefully discriminated into more granular parts:

1. Content producers, actors who create or acquire digital content and exercise ultimate intellectual, administrative, financial, and permissive control and responsibility for its ongoing stewardship;
2. Content managers, actors who oversee managed content and exercise delegated administrative,
technical, and instrumental control and responsibility for its ongoing stewardship; and

3. Content consumers, actors who exploit managed content for some purpose.

These roles correspond to the producer, archive/management, and consumer entities in the OAIS reference model (ISO 14721, 2012). "Actor" should be construed in the most general sense as either a corporate or human agent; even if they make extensive use of technological facilities, ultimate curation agency always resides in institutional or individual actors. There are three high-level life-cycle stages corresponding to the main activities of these actors; again, all are amenable to more nuanced internal distinctions:

1. Content production;
2. Content management; and
3. Content consumption.

As Upward points out (1997), however, it may be more useful to talk about an activity continuum rather than life-cycle, as the later implies a linear progression through well-defined and clearly demarcated stages. In distinction, a continuum approach emphasizes the essential non-linear contiguity and overlapping interdependence of curation activities. Thus, it is appropriate to group various curation engagement activities by thematic loci within a permeable continuum, characterized by dimensions of first-order origination, concerned with establishing the resource objects of curation focus; second-order organization, concerned with codifying and imposing appropriate structure on curation resources; and third-order pluralization, concerned with expanding the reach and consequence of curation resources, rather than discrete life-cycle stages (see Table 3). A comprehensive curation program will formulate—and over time, maintain, revise, and extend—controlling policies, executable strategies, and implementing guidance, systems, services, and operational procedures for all major continuum resources and activities.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Originate</th>
<th>Organize</th>
<th>Plurize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>observe, simulate, create, derive</td>
<td>identify, classify, clean, annotate, package</td>
<td>license, submit, publish, cite, aggregate</td>
</tr>
<tr>
<td>Management</td>
<td>appraise, select, harvest, collect</td>
<td>characterize, normalize, store, index, plan, watch, intervene, administer</td>
<td>replicate, audit, notify, syndicate, report</td>
</tr>
<tr>
<td>Consumption</td>
<td>search, discover, retrieve, subselect</td>
<td>analyze, correlate, synthesize, interpret, transform, annotate</td>
<td>summarize, validate, assert, refute</td>
</tr>
</tbody>
</table>

Table 3 – Curation engagement continuum

2.5 Modeling curation policies and strategies

A formal statement of curation policy is necessary to set expectations properly and form the basis for acceptable terms of service and assessment of the efficacy of curation outcomes. Strategies represent specific organizational intentions for fulfilling or enforcing promulgated policies (Becker at al., 2009; Sierman, 2014). Strategies are implemented by concrete plans and activities. Curation policies, strategies, plans, and activities are modeled in terms of a set of high-level categories of consideration. These consist of one preparatory imperative:
0. **Predilect.** Decide what you intend to do.

and five implementation imperatives:

1. **Collect.** Obtain what you intend.
2. **Protect.** Preserve what you obtain.
3. **Introspect.** Know what you protect.
4. **Project.** Offer what you know.
5. **Connect.** Deliver what you offer.

Although with most obvious applicability to content, these imperatives are equally relevant to other aspects of the curation complex, for example, technical infrastructure, operational procedures, staffing, etc.

Each implementation consideration can be applied to every typological class (see Table 4). While the resulting matrix is suggestive of the NDSA levels of preservation (Library of Congress, 2013; Philips et al., 2013), the typological progression (entity, artifact, etc.) plays a different role than the NDSA levels as it defines accumulating levels of utility rather than assurance. There is a general inheritance of relevant considerations across the typological and imperative progressions.

<table>
<thead>
<tr>
<th>Imperative</th>
<th>Entity</th>
<th>Artifact</th>
<th>Article</th>
<th>Product</th>
<th>Record</th>
<th>Asset</th>
<th>Heirloom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predilect</td>
<td>service level agreement</td>
<td>disaster recovery / business continuity</td>
<td>action plans</td>
<td>collection development policy</td>
<td>evidentiary standards</td>
<td>outreach and training</td>
<td>sustainability / succession planning</td>
</tr>
<tr>
<td>Collect</td>
<td>annotation</td>
<td>packaging, submission</td>
<td>normalization / canonicalization</td>
<td>workflow / tool integration</td>
<td>chain of custody</td>
<td>code / workflow repository, aggregation</td>
<td>chain of custody</td>
</tr>
<tr>
<td>Protect</td>
<td>environmental control, write blocking, media refresh, redundancy, decorrelation</td>
<td>administrative control, malware detection / sanitization, heterogeneity, fixity audit</td>
<td>technical control, migration</td>
<td>bibliographic control</td>
<td>archival control</td>
<td>access control, emulation</td>
<td>change control, technology watch</td>
</tr>
<tr>
<td>Introspect</td>
<td>forensic characterization</td>
<td>morphological characterization, identifier minting</td>
<td>structural characterization, ontologies, technical registry</td>
<td>intellectual characterization, entity extraction, sentiment analysis, identifier binding</td>
<td>archival characterization, master registry</td>
<td>behavioral characterization, software registry, analytics</td>
<td>provenance, annotation</td>
</tr>
<tr>
<td>Project</td>
<td>media inventory</td>
<td>file inventory, PID resolution</td>
<td>object index</td>
<td>work catalog</td>
<td>documentary form</td>
<td>transcoding, syndication, discovery</td>
<td>versioned change history</td>
</tr>
<tr>
<td>Connect</td>
<td>legacy/emulated computational environments</td>
<td>file delivery</td>
<td>local format-aware processing</td>
<td>local disciplinary-specific processing</td>
<td>local authenticity dependent workflows</td>
<td>search/browse, hosted tools, annotation</td>
<td>consortial collaboration</td>
</tr>
</tbody>
</table>

Table 4 – Curation policy and strategy
A media inventory, file inventory, object inventory, and catalog are distinguished by respectively exposing for public view and retrieval enumerations of physical media, (opaque) files, aggregations of structurally-related and/or constrained files and bitstreams, and intellectually-coherent works.

The foundational imperative for all curation activities is collection, that is, bringing content into an appropriate technical infrastructure under the aegis of a responsible managerial actor. While it is possible that collected content will not be fully susceptible to curation strategies leading to successful outcomes, it is almost certain that uncollected content will result in curation failure (Rosenthal, 2014). The baseline level of preservation assurance that can be realistically-asserted by a responsible curating agent is either as an entity or artifact, depending upon whether the content was collected as (undifferentiated) media or (opaque) files. Increasingly higher-order outcomes may be possible if the collected content meets the incrementally more stringent criteria for articles, commodities, assets, or heirlooms, that is, the content encapsulates or is accompanied by appropriate characterizing syntactic, semantic, or pragmatic annotations, and is subject to appropriate dynamic intervention to combat degradation across space and time.

The notion of a range of possible outcomes is fundamental to UC3’s stated preservation obligation:

CDL aims to provide the highest level of preservation for User’s content, as defined by commonly-accepted community standards and best practices, that is consistent with the form, structure, and packaging of the managed digital content, the degree to which that content is accompanied by authoritative and comprehensive metadata, the availability of appropriate tools, and organizational priorities. Note that this implies a continuum of preservation outcomes dependent on the nature of the content submitted by User, although at a minimum, CDL is committed to providing bit-level preservation of all content (CDL, 2014).

This public statement of policy can be recast more formally in the technical language of the UC3 Sept model:

1. UC3 will accept custodial stewardship for arbitrary digital content regardless of its position in the typological spectrum from artifact to asset.
2. UC3 does not (currently) accept custodianship of entities (i.e., physical media objects).
3. UC3’s custodial obligation is to preserve content to the extent consistent with its typological basis, that is, ensuring the:
 a. Morphological integrity of artifacts (i.e., opaque objects);
 b. Structural integrity of articles (syntactically-characterized objects);
 c. Semantic integrity of commodities (semantically-characterized objects); and the
 d. Behavioral integrity of assets (pragmatically-characterized objects).
4. UC3 will provide effective technical mechanisms to acquire and manage the annotations necessary to support a given object’s typological integrity.
5. UC3 will provide effective technical mechanisms to acquire, manage, and execute the behaviors necessary to realize a given asset’s pragmatic integrity.
3 Summary

The digital curation field has reached a stage of maturity where it can usefully draw upon a rich body of theoretical research and practical experience. Many specific segments of the curation domain have been subject to modeling activities, but the scope, coverage, and granularity of this work has varied widely. In an effort to produce a comprehensive view of the domain for purposes of analysis, planning, and evaluation of its activities, the UC Curation Center has synthesized and reformulated the many valuable contributions of prior efforts such as FRBR, OAIS, NAA, PLM, PREMIS, BRM, ICO, SPOT, and NDSA into a new inclusive model. One important insight of the UC3 modeling effort is that engagement with digital content is an inherently semiotic process. Thus, UC3’s Sept model approaches all aspects of curation activities through the lens of the six semiotic dimensions of semantics, syntactics, empirics, pragmatics, diplomatics, and dynamics, which correspond to longstanding curation concerns with abstract noumenal meaning or affect, inner and outer encoding structures, physical carriers, realizing behaviors, archival authenticity, and persistence and evolution through time. The model conceives of a digital object as a means for reifying abstract content into tangible form for purposes of mediated communication between a producer and consumer, carefully distinguishing, however, between an object’s message and meaning; the former being an objective embodiment of an expressed thought, while the latter is an emergent epistemic property arising from a subjective, contextualized reaction to the message. This leads to a hierarchical typology of accumulating content utility consisting of entities, which are arbitrary digital things; artifacts, which are intentional entities; articles, purposeful artifacts; products, interpretable articles; records, reliable products, assets, useful records; and heirlooms, resilient assets. Engagement with curated content is modeled by three classes of actor roles and loci of concerns – producers/production, managers/management, consumers/consumption – all within a continuum of originating, organizing, and pluralizing dimensions that address concerns of establishing, imposing order and structure upon, and extending the reach and consequence of curation resources, including content, activities, staff, and technology. Curation intentions, policies, strategies are modeled by six imperatives: predilect, collect, protect, introspect, project, and connect that apply respectively to considerations of analysis, decision making and planning; acquisition and collection; preservation across space and time; semantic, syntactic, and pragmatic characterization; publication and notification; and consumer engagement.

All of the Sept model components were developed incrementally from first principles in an effort to ensure comprehensive applicability and internal consistency. The use of such a model is important for increasing confidence that programmatic planning is systematic and not ad hoc. While the model introduces unfamiliar terminology, UC3 believes that this vocabulary supports important nuanced distinctions in the delineation of content, content engagement, and curation policies and strategies. The model’s granular definition permits the concise statement of common curation intentions, activities, and outcomes. It forms the basis for UC3’s decision-making processes regarding curation infrastructure, services, and initiatives, and may be of interest to the wider curation community, with which it shares many common concerns and practices.
Acknowledgements

The underlying Sept model and its description in this whitepaper have been materially improved through discussions with Christoph Becker, Michael Buckland, Asen Ivanov, John Kunze, Emily Maemura, Jerry McDonough, Nathan Moles, Sheila Morrissey, Seamus Ross, and Barbara Sierman.

References

[51] Saussure, Ferdinand de (1916), Cours de linguistique générale [Course in general linguistics], ed. Charles Bally and Albert Sechehaye (1986; La Salle: Open Court).

